`); let searchUrl = `/search/`; history.forEach((elem) => { prevsearch.find('#prevsearch-options').append(`
${elem} `); }); } $('#search-pretype-options').empty(); $('#search-pretype-options').append(prevsearch); let prevbooks = $(false); [ {title:"Recently Opened Textbooks", books:previous_books}, {title:"Recommended Textbooks", books:recommended_books} ].forEach((book_segment) => { if (Array.isArray(book_segment.books) && book_segment.books.length>0 && nsegments<2) { nsegments+=1; prevbooks = $(`
${book_segment.title} `); let searchUrl = "/books/xxx/"; book_segment.books.forEach((elem) => { prevbooks.find('#prevbooks-options'+nsegments.toString()).append(`
${elem.title} ${ordinal(elem.edition)} ${elem.author} `); }); } $('#search-pretype-options').append(prevbooks); }); } function anon_pretype() { let prebooks = null; try { prebooks = JSON.parse(localStorage.getItem('PRETYPE_BOOKS_ANON')); }catch(e) {} if ('previous_books' in prebooks && 'recommended_books' in prebooks) { previous_books = prebooks.previous_books; recommended_books = prebooks.recommended_books; if (typeof PREVBOOKS !== 'undefined' && Array.isArray(PREVBOOKS)) { new_prevbooks = PREVBOOKS; previous_books.forEach(elem => { for (let i = 0; i < new_prevbooks.length; i++) { if (elem.id == new_prevbooks[i].id) { return; } } new_prevbooks.push(elem); }); new_prevbooks = new_prevbooks.slice(0,3); previous_books = new_prevbooks; } if (typeof RECBOOKS !== 'undefined' && Array.isArray(RECBOOKS)) { new_recbooks = RECBOOKS; for (let j = 0; j < new_recbooks.length; j++) { new_recbooks[j].viewed_at = new Date(); } let insert = true; for (let i=0; i < recommended_books.length; i++){ for (let j = 0; j < new_recbooks.length; j++) { if (recommended_books[i].id == new_recbooks[j].id) { insert = false; } } if (insert){ new_recbooks.push(recommended_books[i]); } } new_recbooks.sort((a,b)=>{ adate = new Date(2000, 0, 1); bdate = new Date(2000, 0, 1); if ('viewed_at' in a) {adate = new Date(a.viewed_at);} if ('viewed_at' in b) {bdate = new Date(b.viewed_at);} // 100000000: instead of just erasing the suggestions from previous week, // we just move them to the back of the queue acurweek = ((new Date()).getDate()-adate.getDate()>7)?0:100000000; bcurweek = ((new Date()).getDate()-bdate.getDate()>7)?0:100000000; aviews = 0; bviews = 0; if ('views' in a) {aviews = acurweek+a.views;} if ('views' in b) {bviews = bcurweek+b.views;} return bviews - aviews; }); new_recbooks = new_recbooks.slice(0,3); recommended_books = new_recbooks; } localStorage.setItem('PRETYPE_BOOKS_ANON', JSON.stringify({ previous_books: previous_books, recommended_books: recommended_books })); build_popup(); } } var whiletyping_search_object = null; var whiletyping_search = { books: [], curriculum: [], topics: [] } var single_whiletyping_ajax_promise = null; var whiletyping_database_initial_burst = 0; //number of consecutive calls, after 3 we start the 1 per 5 min calls function get_whiletyping_database() { //gets the database from the server. // 1. by validating against a local database value we confirm that the framework is working and // reduce the ammount of continuous calls produced by errors to 1 per 5 minutes. return localforage.getItem('whiletyping_last_attempt').then(function(value) { if ( value==null || (new Date()) - (new Date(value)) > 1000*60*5 || (whiletyping_database_initial_burst < 3) ) { localforage.setItem('whiletyping_last_attempt', (new Date()).getTime()); // 2. Make an ajax call to the server and get the search database. let databaseUrl = `/search/whiletype_database/`; let resp = single_whiletyping_ajax_promise; if (resp === null) { whiletyping_database_initial_burst = whiletyping_database_initial_burst + 1; single_whiletyping_ajax_promise = resp = new Promise((resolve, reject) => { $.ajax({ url: databaseUrl, type: 'POST', data:{csrfmiddlewaretoken: "SFx4qnlvsyX6thzozVNUyfVGYG4H93ezRAPCN8mnHD5TkYSyjBJUw8tUnwcNo9XM"}, success: function (data) { // 3. verify that the elements of the database exist and are arrays if ( ('books' in data) && ('curriculum' in data) && ('topics' in data) && Array.isArray(data.books) && Array.isArray(data.curriculum) && Array.isArray(data.topics)) { localforage.setItem('whiletyping_last_success', (new Date()).getTime()); localforage.setItem('whiletyping_database', data); resolve(data); } }, error: function (error) { console.log(error); resolve(null); }, complete: function (data) { single_whiletyping_ajax_promise = null; } }) }); } return resp; } return Promise.resolve(null); }).catch(function(err) { console.log(err); return Promise.resolve(null); }); } function get_whiletyping_search_object() { // gets the fuse objects that will be in charge of the search if (whiletyping_search_object){ return Promise.resolve(whiletyping_search_object); } database_promise = localforage.getItem('whiletyping_database').then(function(database) { return localforage.getItem('whiletyping_last_success').then(function(last_success) { if (database==null || (new Date()) - (new Date(last_success)) > 1000*60*60*24*30 || (new Date('2023-04-25T00:00:00')) - (new Date(last_success)) > 0) { // New database update return get_whiletyping_database().then(function(new_database) { if (new_database) { database = new_database; } return database; }); } else { return Promise.resolve(database); } }); }); return database_promise.then(function(database) { if (database) { const options = { isCaseSensitive: false, includeScore: true, shouldSort: true, // includeMatches: false, // findAllMatches: false, // minMatchCharLength: 1, // location: 0, threshold: 0.2, // distance: 100, // useExtendedSearch: false, ignoreLocation: true, // ignoreFieldNorm: false, // fieldNormWeight: 1, keys: [ "title" ] }; let curriculum_index={}; let topics_index={}; database.curriculum.forEach(c => curriculum_index[c.id]=c); database.topics.forEach(t => topics_index[t.id]=t); for (j=0; j
Solutions
Textbooks
`); } function build_solutions() { if (Array.isArray(solution_search_result)) { const viewAllHTML = userSubscribed ? `View All` : ''; var solutions_section = $(` Solutions ${viewAllHTML} `); let questionUrl = "/questions/xxx/"; let askUrl = "/ask/question/xxx/"; solution_search_result.forEach((elem) => { let url = ('course' in elem)?askUrl:questionUrl; let solution_type = ('course' in elem)?'ask':'question'; let subtitle = ('course' in elem)?(elem.course??""):(elem.book ?? "")+" "+(elem.chapter?"Chapter "+elem.chapter:""); solutions_section.find('#whiletyping-solutions').append(` ${elem.text} ${subtitle} `); }); $('#search-solution-options').empty(); if (Array.isArray(solution_search_result) && solution_search_result.length>0){ $('#search-solution-options').append(solutions_section); } MathJax.typesetPromise([document.getElementById('search-solution-options')]); } } function build_textbooks() { $('#search-pretype-options').empty(); $('#search-pretype-options').append($('#search-solution-options').html()); if (Array.isArray(textbook_search_result)) { var books_section = $(` Textbooks View All `); let searchUrl = "/books/xxx/"; textbook_search_result.forEach((elem) => { books_section.find('#whiletyping-books').append(` ${elem.title} ${ordinal(elem.edition)} ${elem.author} `); }); } if (Array.isArray(textbook_search_result) && textbook_search_result.length>0){ $('#search-pretype-options').append(books_section); } } function build_popup(first_time = false) { if ($('#search-text').val()=='') { build_pretype(); } else { solution_and_textbook_search(); } } var search_text_out = true; var search_popup_out = true; const is_login = false; function pretype_setup() { $('#search-text').focusin(function() { $('#search-popup').addClass('show'); resize_popup(); search_text_out = false; }); $( window ).resize(function() { resize_popup(); }); $('#search-text').focusout(() => { search_text_out = true; if (search_text_out && search_popup_out) { $('#search-popup').removeClass('show'); } }); $('#search-popup').mouseenter(() => { search_popup_out = false; }); $('#search-popup').mouseleave(() => { search_popup_out = true; if (search_text_out && search_popup_out) { $('#search-popup').removeClass('show'); } }); $('#search-text').on("keyup", delay(() => { build_popup(); }, 200)); build_popup(true); let prevbookUrl = `/search/pretype_books/`; if (is_login) { $.ajax({ url: prevbookUrl, method: 'POST', data:{csrfmiddlewaretoken: "SFx4qnlvsyX6thzozVNUyfVGYG4H93ezRAPCN8mnHD5TkYSyjBJUw8tUnwcNo9XM"}, success: function(response){ previous_books = response.previous_books; recommended_books = response.recommended_books; build_popup(); }, error: function(response){ console.log(response); } }); } else { let prebooks = null; try { prebooks = JSON.parse(localStorage.getItem('PRETYPE_BOOKS_ANON')); }catch(e) {} if (prebooks && 'previous_books' in prebooks && 'recommended_books' in prebooks) { anon_pretype(); } else { $.ajax({ url: prevbookUrl, method: 'POST', data:{csrfmiddlewaretoken: "SFx4qnlvsyX6thzozVNUyfVGYG4H93ezRAPCN8mnHD5TkYSyjBJUw8tUnwcNo9XM"}, success: function(response){ previous_books = response.previous_books; recommended_books = response.recommended_books; build_popup(); }, error: function(response){ console.log(response); } }); } } } $( document ).ready(pretype_setup); $( document ).ready(function(){ $('#search-popup').on('click', '.search-view-item', function(e) { e.preventDefault(); let autoCompleteSearchViewUrl = `/search/autocomplete_search_view/`; let objectUrl = $(this).attr('href'); let selectedId = $(this).data('objid'); let searchResults = []; $("#whiletyping-solutions").find("a").each(function() { let is_selected = selectedId === $(this).data('objid'); searchResults.push({ objectId: $(this).data('objid'), contentType: $(this).data('contenttype'), category: $(this).data('category'), selected: is_selected }); }); $("#whiletyping-books").find("a").each(function() { let is_selected = selectedId === $(this).data('objid'); searchResults.push({ objectId: $(this).data('objid'), contentType: $(this).data('contenttype'), category: $(this).data('category'), selected: is_selected }); }); $.ajax({ url: autoCompleteSearchViewUrl, method: 'POST', data:{ csrfmiddlewaretoken: "SFx4qnlvsyX6thzozVNUyfVGYG4H93ezRAPCN8mnHD5TkYSyjBJUw8tUnwcNo9XM", query: $('#search-text').val(), searchObjects: JSON.stringify(searchResults) }, dataType: 'json', complete: function(data){ window.location.href = objectUrl; } }); }); });
FAQs
Step - 1: Compute f(x + h) by substituting x = x + h on both sides of f(x). Step - 2: Compute the difference f(x + h) - f(x). Step - 3: Divide the difference from Step - 2 by h.
What is f(x)h called? ›
The difference quotient is a measure of the average rate of change of the function over an interval (in this case, an interval of length h). The limit of the difference quotient (i.e., the derivative) is thus the instantaneous rate of change.
What is the difference quotient for the linear function f(x)= − 4x + 5? ›
Answer. The difference quotient for the linear function f(x) = -4x + 5 is calculated step-by-step, and the result is -4, which is equal to the slope of the function, indicating that the function's rate of change is constant.
What is the f x formula? ›
f(x) means: a function called 'f' which takes an input of 'x'. Please note that y = f(x) is nothing magical. 'f' is just the name of the function, 'x' is just the function's input and 'y' is just the function's output. So y = f(x) means: a function called 'f' which inputs 'x' and outputs 'y'.
What does f =( X mean? ›
f(x) is the value of the function. m is the slope of the line. b is the value of the function when x equals zero or the y-coordinate of the point where the line crosses the y-axis in the coordinate plane. x is the value of the x-coordinate.
How do you simplify your answer in math? ›
How do you simplify mathematical expressions? Order of operations play a major role in simplifying mathematical operations. The correct order of operations is: terms in parentheses, exponents, multiplication, division, addition, and, finally, subtraction. A handy acronym you can use to remember this is PEMDAS.
How do you simplify a quotient? ›
Step 1: Use the quotient rule to place both the radicand in the numerator and the radicand in the denominator underneath the same radicand. The numbers in the fraction stay the same but they will now be underneath the same radicand. Step 2: Simplify the fraction underneath the radicand, if possible.
Is quotient the same as answer? ›
When you add two numbers the answer is called the sum. When you divide two numbers the answer is called the quotient. The quotient of six divided by two is three.
Does f mean X or Y? ›
Sometimes the equation is written with function notation, f(x), instead of y. It means the same thing, but shows what input value was used to find the output.
What is h in math? ›
In algebra, the 'H' symbol often represents a variable, like 'x,' 'y', or 'z. ' It can stand for any number that has yet to be discovered. For example, in the equation H = 2x + 3, H is a variable that depends on the value of x. However, in advanced mathematics, specifically group theory, 'H' often denotes a subgroup.
The equation y = f(x) represents a functional relationship between a dependent variable (y) and one or more independent variables (x). In mathematical terms, it describes how changes in the independent variables (x) lead to changes in the dependent variable (y).
What is h in the difference quotient? ›
h. – represents the change in x or (x2 – x1) or ∆x. f (x+h) – f (x) – represents (y2 – y1)
What is the quotient rule FX and GX? ›
The quotient rule is a method for differentiating problems where one function is divided by another. The premise is as follows: If two differentiable functions, f(x) and g(x), exist, then their quotient is also differentiable (i.e., the derivative of the quotient of these two functions also exists).
What is h in the derivative formula? ›
h is the step size. You want it approaching 0 so that x and x+h are very close. There is an alternate (equivalent) definition of the derivative that does have the variable approaching a (nonzero) number.
How do you find X when given a function? ›
To find the x -value: Set f ( x ) equal to the y -value you've been given, and solve the equation for x . You have the function f ( x ) = 2 x − 3 . Find the x -value when f ( x ) = 2 , and the y -value when x = 2 .
How to find h '( x? ›
Chain Rule: Suppose that h(x) = (fÎg)(x) = f(g(x) . Then the derivative, h'(x) is h'(x) = f '(g(x)) · g'(x).
What is h in a function? ›
h = f ◦ g (1) h is the function that is made from f composed with g. For regular functions such as, say: f(x)=3x2 + 2x + 1. (2)